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Biodiversity experiments have shown that species loss reduces ecosystem functioning in
grassland. To test whether this result can be extrapolated to forests, the main contributors to
terrestrial primary productivity, requires large-scale experiments. We manipulated tree species
richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating
multiple extinction scenarios, we found that richness strongly increased stand-level
productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of
carbon found in average monocultures and similar amounts as those of two commercial
monocultures. Species richness effects were strongly associated with functional and
phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this
reduction was smaller at high shrub species richness. Our results encourage multispecies
afforestation strategies to restore biodiversity and mitigate climate change.

F
orest ecosystems harbor around two-thirds
of all terrestrial plant species. Observational
studies suggest that species-rich forests ex-
ceed the productivity of less diverse forests
(1–3), but covarying factors [such as spatial

heterogeneity in abiotic environment (1), species
composition (2), and successional stages (2)] make
assigning causation difficult. Systematic experimen-
tal manipulations of plant species composition in

grassland (4–6) have shown that plant diversity
promotes community productivity through niche
partitioning among species, specifically with re-
spect to abiotic resources (7) or interactions with
enemies (8), or through increasing the contribu-
tion of highly productive species in more diverse
communities (9). These two types of biological
mechanisms are thought to be captured by the
complementarity and selection effects calculated

by the additive partitioning of net biodiversity
effects (10). Complementarity effects are large and
positive when most species in a mixture contrib-
ute more than expected on the basis of their
monoculture values to community values, and
negative when most species in a mixture con-
tribute less than expected, whereas selection
effects are large when a single or few species
show a disproportionate contribution to com-
munity values (10). It has been postulated that
biodiversity effects may be weak or absent in
forests, especially in those of high species rich-
ness, because the coexistence of somany species
may require similar niches and competitive abil-
ities (1, 11–13).
Several forest biodiversity experiments have

recently been initiated (14, 15), mostly in the tem-
perate zone or in small plots with limited species
richness gradients (16–22). Here, we report results
of the “BEF-China” experiment (BEF, biodiversity–
ecosystem functioning) that was established in
a highly diverse subtropical forest in southeast
China (23). The experiment is characterized by a
large species richness gradient, multiple simu-
lated extinction scenarios, high replication, and
extended duration (2009 to present). We studied
how changing tree species richness affected stand-
level development of tree basal area, aboveground
volume, and aboveground carbon (C) from 2013
to 2017 (24). The experiment was implemented
at two sites (site A and site B) of ~20 ha each,
with communities assembled from six partially
overlapping species pools (three per site). A com-
plete pool represented a 16-species community,
which was repeatedly divided to yield reduced
richness levels of eight, four, two, and one species;
in addition, 24-species communities were created
by combining species of all three pools present at
each site (fig. S1) (24). Of the 42 tree species used
in the experiment (table S1), 40 occurred with the
same frequency at each richness level. The re-
maining two species were typical plantation
species in the area and were established in
reference monocultures. A special feature of the
design is that within each pool, communities
form nested series that simulate different trajec-
tories of trait-based species extinctions (fig. S2
and table S2). We analyzed trajectories related to
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means and diversities of the three functional
traits leaf duration (LD), specific leaf area (SLA),
and wood density (WD). These traits are often
used to characterize plant-growth strategies (25)
and are potentially related to extinction proba-
bilities under environmental change (26). In 2009
(site A) and 2010 (site B), communities of 400
trees were planted on square plots 0.067 ha in
size, which equals the Chinese area unit of 1 mu.

Communities of pools A2, A3, B2, and B3 (fig. S1)
were established in single 1-mu plots. Each com-
munity of pools A1 and B1 was replicated in five
1-mu plots, four of which formed a larger square
plot of 4 mu; these four plots received an
understory shrub species richness treatment
factorially crossed with the tree species richness
gradient: Plots had zero, two, four, or eight shrub
species randomly selected from a pool of 18

species, with shrubs planted at the same density
as the trees.
We found significant positive effects of the

logarithm of tree species richness on stand basal
area and stand volume as well as on the annual
increments of these two variables (Table 1, Fig. 1,
and figs. S3 and S4). These effects grew steadi-
ly through time (changes in stand volume per
doubling of species, with standard errors, were
0.74 ± 0.58, 1.47 ± 0.85, 2.98 ± 1.29, 4.91 ± 1.83, and
6.99 ± 2.24 m3 ha−1 from 2013 to 2017). Mean
volume increments were larger in wetter years
(F1,99.1 = 7.58, P = 0.007), but richness effects on
volume increments were not affected by annual
precipitation (F1,91.7 = 2.25,P= 0.137). After 8 years
of growth (site A), the average 16-species mix-
ture stored 31.5 Mg C ha−1 above ground [95%
Bayesian credible interval (CI), 25.5 to 37.6] (24),
which is more than double the amount found in
monocultures (11.9 Mg C ha−1; CI, 10.6 to 13.5) (fig.
S5) and similar to the C storage ofmonocultures of
the commercial plantation species Cunninghamia
lanceolata (26.3 Mg C ha−1; CI, 19.0 to 33.2) and
Pinus massoniana (28.5 Mg C ha−1; CI, 20.8 to
36.1) (fig. S5). These strong positive effects of tree
species richness must have been driven by faster
growth of live trees inmore diverse stands because
tree survival rate did not increase with species
richness (fig. S6). This is in contrast to findings
in a large grassland biodiversity experiment in
which positive diversity effects on productivity
were mediated by a greater number rather than
larger size of individuals inhigh-diversity plots (27).
The net biodiversity effect (10) on stand vol-

ume increased through time for mixtures of all
species-richness levels (year as linear term with
F1,38.6 = 29.15, P < 0.001) (Fig. 2) and was driven
by increases in complementarity effects (year as
linear term with F1,52.4 = 9.23, P = 0.004) (Fig. 2).
Selection effectswere on average negative (F1,37.8 =
8.75, P = 0.005) because some species with rel-
atively highmonoculture stand volume had lower
performance in mixtures, and some with rela-
tively lowmonoculture stand volume had higher
performance. This was corroborated by negative
species-level selection effects (fig. S7).
We tested whether the observed species-

richness effects could be explained by functional
or phylogenetic diversity. For this, we calculated
functional diversity (FD) and functional disper-
sion (FDis) (24) on the basis of the seven plant
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Table 1. Mixed-effects models for effects of site, tree species richness (logSR), year, and interactions on stand-level tree basal area and volume
and their increments. Fixed effects were fitted sequentially (type-I sum of squares) as indicated in the table [random terms are provided in (24)].

n, numbers of plots; df, numerator degrees of freedom; ddf, denominator degrees of freedom; and logSR, log2(tree species richness). F and P indicate F ratios
and the P value of the significance test, respectively.

Basal area (n = 387) Volume (n = 387) Basal area increment (n = 387) Volume increment (n = 387)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Source of variation df ddf F P df ddf F P df ddf F P df ddf F P
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Site 1 120.0 14.35 <0.001 1 100.0 20.79 <0.001 1 121.5 8.12 0.005 1 101.3 20.79 <0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

LogSR 1 111.9 7.45 0.007 1 88.9 6.62 0.012 1 113.8 15.58 <0.001 1 91.2 12.41 <0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Year 4 489.4 309.0 <0.001 4 402.3 197.10 <0.001 3 287.5 9.90 <0.001 3 281.8 35.05 <0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Site × year 4 488.3 7.75 <0.001 4 410.4 20.92 <0.001 3 301.0 9.43 <0.001 3 309.0 19.62 <0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

LogSR × year 4 456.2 15.21 <0.001 4 368.9 11.98 <0.001 3 265.6 3.82 0.010 3 259.0 6.18 <0.001
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Fig. 1. Stand-level tree volume and its increment as a function of tree species richness from
2013 to 2017. (A and B) Stand-level tree volume. (C and D) Stand-level tree volume increment. In
(A) and (C), raw data points and regression lines are shown for each year. (B) and (D) show
predicted means and standard errors based on mixed-effects models (Table 1). The extremes of the
point cloud taper off toward higher diversity levels because of decreasing sample size; quantile
regressions show qualitatively the same positive relationships for the largest 10% of values at each
diversity level (fig. S4). Standard deviations of species compositions (square root of corresponding
between-composition variance components), shown as black error bars above the raw data, indicate
that there is no variance-reduction effect of increasing species richness.
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functional traits LD (deciduous or evergreen), SLA,
WD, leaf dry matter content, leaf nitrogen, leaf
phosphorus, and leaf thickness or the first three
of these (LD, SLA, and WD), which contributed
most to explanatory power. We also calculated
phylogenetic diversity (PD) and mean phyloge-
netic distance (MPD) for each community (24).
All measures of functional and phylogenetic di-
versity had similar explanatory power as that of
species richness for stand-level productivitymea-
sures; differences between species-richness levels
in stand volume could also be explained by asso-
ciated differences in functional or phylogenetic
diversity (fitted before species richness inmodel 1
in tables S3 and S4, respectively). However, none
of the functional or phylogenetic diversity mea-
sures could explain additional variation among
communities of the same richness level (when

fitted after species richness inmodel 2 in tables S3
and S4, respectively). This finding is consistent
with similar reports from large-scale grassland
biodiversity experiments (28). It is conceivable
that for each particular species mixture with
high stand-level productivity, a particular combi-
nation of functional traits causes the observed
biodiversity effect; this cannot be captured by
using the same functional diversity measure for
all species mixtures.
Earlier studies have suggested that positive

biodiversity effects in forestsmight originate from
denser crown packing and enhanced light inter-
ception inmixed-species canopies (21, 29, 30). We
measured the vertical crown extent of all trees in
2016 and 2017 and tested whether plots with less
crown overlap produced greater stand-level vol-
ume (24), which was not the case (F1,446.8 = 1.73,

P = 0.189). A reason for the absence of such a
correlation might be that depending on the par-
ticular species combination, crown dissimilarity
can result from light competition (18) or from
complementary light use among species.
Despite the absence of general effects of func-

tional diversity beyond species richness, we found
some specific effects along themultiple extinction
scenarios inherent in our experimental design (fig.
S2A) (24). Changes in FD with each halving of
species richness were negatively correlated with
stand-volume changes at high but positively cor-
related at low species richness (fig. S8A), sug-
gesting that FD captured beneficial differences
between species at low but not at high diversity.
We then focused on mixtures of two species be-
cause for these, the highest number of distinct
species compositions were available. We found
that a positive correlation of net biodiversity and
complementarity effects with functional-trait dis-
tances developed over the 5 years of measure-
ments (Fig. 3 and table S5). This was also the case
for the diversity of the trait LD, indicating that
mixtures of a shade-tolerant evergreen and a
shade-intolerant deciduous broad-leaved species
captured more light than did species pairs with
uniform leaf duration.
Extinction sequences that differed in trajecto-

ries of community-weighted means for LD, SLA,
or WD (fig. S2, B to D) did not show any signifi-
cant variation in species-richness effects on stand-
level productivity (fig. S8, B to D). This suggests
that effects of trait-based extinctions, at least the
ones tested and often consideredmost important
(25, 26), may not differ much from effects of ran-
dom extinction. Different resultsmight have been
obtained with other trait-based extinction scenar-
ios, either ones that we did not analyze (for exam-
ple, based on root traits) or ones that we did not
simulate.
Plots additionally planted with shrubs (24)

had reduced stand-level tree volume (F1,234.5 =
7.30, P = 0.007), which is consistent with other
findings that shrub removal in forests can increase
tree growth (31). However, the effect of shrub
competition decreased with increasing shrub
species richness (log shrub richness F1,191.9 =
6.57, P = 0.011), even though stand-level basal
area of shrubs did not decrease (fig. S9). The re-
duced competition between shrubs and trees at
higher shrub diversity suggests that complemen-
tarity effects extend to tree interactionswith shrubs.
Our results provide strong evidence for a posi-

tive effect of tree species richness on tree produc-
tivity at stand level in establishing subtropical
forest ecosystems and support the idea that co-
occurring species in highly diverse subtropical
forest can differ in niches and competitive abil-
ities. At the end of the observation period, mixed
stands with 16 species had accumulated about
1.7 times the amount of C found in the average
monoculture (fig. S5). This effect is, on a relative
scale, similar to the 1.8-fold average increase in
aboveground stand biomass from monocultures
to 16-species mixtures in a multisite grassland
biodiversity experiment (4). Given that plant bio-
mass is higher in forests, and that the largest
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Fig. 2. Changes over
time in the net bio-
diversity effect (NE) and
its additive compo-
nents, complementarity
effect (CE) and selec-
tion effect (SE), on
stand-level tree volume
in mixed-species plots.
N = 65 to 77, 50 to 52, 28,
and 14 plots for two-,
four-, eight-, and
16-species mixtures,
respectively. The figure
shows means ± SEs. The
y axis is square root–
scaled to reflect the
quadratic nature of bio-
diversity effects (10).
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Fig. 3. Relationship between functional trait distance and biodiversity effects on stand
volume in two-species mixtures across years. (A to C) Each point represents a plot in a year
(n = 65 to 77 plots). Regression lines are based on mixed-effects models (24). Euclidean trait distances
were calculated with the three z-transformed traits LD, SLA, and WD. The y axes are square
root–scaled to reflect the quadratic nature of biodiversity effects (10). Two extreme y values are
moved to the plot margin and given as numbers.
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fraction of tree C is bound in relatively persistent
woody biomass, these effects translate into large
diversity-mediated rates of C accumulation. Specif-
ically, after 8 years of growth at site A, we found
an extra 19.5 (95% CI, 14.1 to 25.1) Mg C ha−1 accu-
mulated in 16-speciesmixtures relative to the aver-
age monoculture. The biodiversity-productivity
effects thatwe found did not differ between 1-mu
and 4-mu plots (F1,118.5 = 0.07, P > 0.5 for inter-
action log tree species richness × plot size). How-
ever, biodiversity effects might be even larger at
spatial scales beyond the ones that we tested
experimentally because environmental heteroge-
neity might promote spatial insurance effects
(32). Our first-order extrapolation to the global
scale indicated that a 10% decrease in tree spe-
cies richness would lead to a 2.7% decrease in for-
est productivity on average (24), which is within
the range of productivity decreases (2.1 to 3.1%)
reported for the same tree species loss scenario in
a recent observational study that used plot data
covering a large part of the global forests (3). In
that study, it was estimated that such a loss would
correspond to around $20 billion per year of com-
mercial wood production.
Substantial forest areas aremanagedworldwide,

with large afforestation programs underway
(33, 34); in China, the total forested area in-
creased by 1.5 × 106 ha year−1 from 2010 to 2015,
mainly because of new monoculture plantation
of species with high short-term productivity (35).
Our experimental findings suggest that a similar
or potentially even higher productivity can be
achieved with mixed plantations of native spe-
cies. Such strategies would yield cobenefits (2) in
terms of active biodiversitymanagement and like-

ly higher levels of stability of productivity and
ecosystem services under adverse conditions such
as pathogen infestation or future climate change,
including extreme events.
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forests could benefit both restoration of biodiversity and mitigation of climate change.

mixedeffects of tree diversity on forest productivity and carbon accumulation. Thus, changing from monocultures to more 
sizes with a wide range of species richness levels. After 8 years of the experiment, the findings suggest strong positive
experiment in a subtropical forest in China. The study combines many replicates, realistic tree densities, and large plot 

 report the first results from a large biodiversityet al.ecosystem functioning. Is the same true for forests? Huang 
Experimental studies in grasslands have shown that the loss of species has negative consequences for

Tree diversity improves forest productivity
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