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Forest soils are well known sinks for atmospheric methane (CH4), but how the surface litter layer controls
gas diffusion into the mineral soil is still unclear. Seasonal rainfall in the humid climate provides a unique
opportunity to examine uptake of atmospheric CH4 under a wide range of soil water content (SWC). We
studied this question using a litter removal method in a 20-year-old slash pine (Pinus elliottii) plantation
in subtropical China during 2005e2007. Soil-atmosphere CH4 fluxes of the control (FCK) and litter-free
(FLF) treatments and their differences (litter-affected CH4 flux, FCKeLF ¼ FCK � FLF) were all significantly
influenced by SWC and not by soil temperature. Litter layer reduced atmospheric CH4 uptake by soil
when SWC was below 15.8 vol%, and increased atmospheric CH4 consumption by soil when SWC was
above this value. We concluded that the litter layer acts as a moisture-induced bidirectional buffer for
atmospheric CH4 uptake by soils in a subtropical humid pine plantation. However, the removal of the
litter layer had a minimal effect (þ0.7%) on annual atmospheric CH4 uptake by soil, through compen-
sating effects during the wet and dry seasons. Therefore, in the context of climate change, future changes
in SWC will alter the strength of atmospheric CH4 uptake by soils of subtropical pine plantations.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Methane (CH4) is the second most important anthropogenic
greenhouse gas, contributing approximately 14% to global warming
(IPCC, 2007). Moreover, methane plays an important role in
changing the chemical composition of the atmosphere (Cicerone
and Oremland, 1988). The main route for removing atmospheric
CH4 is through reactions with hydroxyl radicals in the troposphere.
Atmospheric CH4 uptake by aerobic soils through microbial
oxidation is a secondary sink and is large enough (about
30 Tg year�1) to influence the global CH4 budget, and this uptake is
likely to shift with changes associated with climate change and
human activities (Smith et al., 2000; Le Mer and Roger, 2001; IPCC,
2007).

Forested soils are the largest active biotic sinks for atmospheric
CH4 on an areal basis (Smith et al., 2000; Le Mer and Roger, 2001).
Atmospheric CH4 uptake strength by aerated soils is usually
controlled by methanotrophs (CH4 oxidizing microbes) and gas
.
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diffusivity. Methanotrophs generally have their highest activity in
the uppermost mineral layers (Bender and Conrad, 1994; Price
et al., 2003; Wolf et al., 2011) due to lower amounts of ammo-
nium (Schnell and King, 1994) and more favorable soil water con-
tent (SWC) (Schnell and King, 1996). Because of the high potential
of CH4 oxidation by methanotrophs (Saari et al., 1998), gas diffu-
sivity is generally the primary factor in regulating atmospheric CH4
consumption in forest soils (Striegl, 1993; Brumme and Borken,
1999). Gas diffusivity is greatly affected by SWC, as CH4 diffuses
104 times slower in water than in air (Marrero and Mason, 1972).
Litter layers of boreal and temperate well drained forests have
generally been reported to have little CH4 oxidation capacities
(Saari et al., 1998; Brumme and Borken, 1999; Steinkamp et al.,
2001). Thus, litter layers are primarily considered as physical bar-
riers against atmospheric CH4 diffusion to mineral soils. Reductions
in atmospheric CH4 uptake by soil (Brumme and Borken, 1999),
especially under dry soil conditions, have been shown in litter
removal studies (Borken and Brumme,1997; Dong et al., 1998; Saari
et al., 1998; Steinkamp et al., 2001; Price et al., 2003; Yan et al.,
2008; Peichl et al., 2010). In support of this concept, Brumme and
Borken (1999) found a negative relationship between CH4 uptake
rates and thickness of organic horizons. However, Borken and Beese
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(2006) suggested that litter layer removal decreased CH4 uptake by
German forest soils because the litter horizon may hold partial
rainfall and maintain gas diffusivity of the mineral soil. Further-
more, in contrast to boreal and temperate forests, litter layers of
tropical montane forests have high CH4 methane oxidation rate,
which can influence CH4 exchange between the soil and atmo-
sphere (Wolf et al., 2011). Thus, under wet soil conditions, litter
layers may also mitigate mineral soil water saturation and increase
atmospheric CH4 uptake by soils and litter layers.

Subtropical forests of southern China are characterized by a
humid climate with high temperatures and precipitation rates.
Even though annual rainfall is relatively high, seasonal wet
(JanuaryeJune) and dry (JulyeDecember) conditions alternate over
an annual cycle. It is not known how this precipitation regime af-
fects atmospheric CH4 consumption by subtropical forest soils.
With climate change induced changes in precipitation amount and
patterns, we need a better understanding of the potential bidirec-
tional buffering roles of litter layer on CH4 uptake by forest soils.
Furthermore, subtropical forests are widely distributed and
currently encompass a total area of approximately 53 million
hectares. By the late 1970s, however, the majority of natural forests,
primarily composed of evergreen broad-leaved species, were
heavily destroyed. To prevent environmental degradation, forest
restoration campaigns were extensively launched in the 1980s
(Wang et al., 2011, 2012b). These forest plantations, which
accounted for 41% of the total subtropical forested area, were
mainly established by coniferous species. Slash pine (Pinus elliottii)
is an important member of the conifers due to its fast growth
characteristic (Wang et al., 2009, 2012a). Nevertheless, it is not
clear how litter layer affects atmospheric CH4 uptake by soils of
subtropical humid slash pine plantations in southern China.

The objectives of this study were to test the following hypoth-
eses: (i) the litter layer will reduce atmospheric CH4 uptake by soil
under dry conditions, (ii) the litter layer may promote atmospheric
CH4 consumption by soil under wet conditions, (iii) the bidirec-
tional buffering effects will be regulated by soil moisture, and (iv)
the balance of the bidirectional buffering effects determine the
annual role of litter layer on atmospheric CH4 uptake by soil of slash
pine plantations in subtropical China.

2. Materials and methods

2.1. Site description

This research was carried out in an evergreen slash pine (P.
elliottii Englem.) plantation (26�4403900 N, 115�0303300 E, elevation
102 m) at Qianyanzhou Ecological Research Station in subtropical
China. This even-aged pine plantation was established in 1985.
Therewere also a fewMasson pine (Pinus massoniana) in this stand.
Mean tree height was 15 m; mean diameter at breast height was
16.1 cm; mean stand basal areawas 35m2 ha�1; and mean leaf area
index was 4.5 m2 m�2. The main understory and midstory species
were Woodwardia japonica (L. f.) Sm., Dicranopteris dichotoma
(Thunb.) bernh, Loropetalum chinense (R. Br.) Oliver., and Quercus
fabric Hance. Prior to being a pine plantation, the vegetation was
dominated by shrubs and grasses. The soil, weathered from red
sandstone and mud stone, is common for this region and classified
as a Typic Dystrudepts using the soil taxonomy of United States
Department of Agriculture. Soil texture was sandy loam with 68%
sand and 15% clay (Wen et al., 2010). Surface (0�20 cm) bulk
density was 1.51 g cm�3; porosity was 43%; organic carbon was
9.4 g kg�1; total N content was 0.66 g kg�1; and pH was 4.5. This
area was characterized by a humid monsoon climate, with a mean
air temperature of 17.9 �C, rainfall amounts of 1469 mm year�1 and
rainfall frequency of 75e100 days year�1 (1985e2008). Annual
evapotranspiration was 747 mm year�1 (2003e2007; Wen et al.,
2010). Even though annual precipitation is high, a seasonal
drought (JulyeDecember) usually occurs. About 30% of precipita-
tion and 54% of evapotranspiration occurred in the dry season
during the period of 2003e2010. Further details can be found in
Wang et al. (2011) and Zhang et al. (2011).

2.2. Experimental design

The litter layer of the slash pine plantation was approximately
4e5 cm in thickness, with a carbon density of about 900 g C m�2.
We used a litter layer removal method (Wang et al., 2012b) to
investigate the impact of litter layer on soil-atmosphere CH4 flux.
The treatments of soil with and without litter layer were defined as
control and litter-free, respectively. Each treatment had six sam-
pling points, located about 3e5 m apart. The two treatments were
laid out using a pairwise distribution. All chambers were placed at
some distance (>1 m) from the tree stems to avoid cutting coarse
roots. In the litter-free treatment, nylon nets (2emm mesh) were
placed on the soil surface in order to conveniently remove fresh
litter. Litter was removed one or two days before measurement. The
ground shrubs and grasses in both treatments were removed dur-
ing the whole study period.

2.3. Measurement of soil-atmosphere CH4 flux

Soil-atmosphere CH4 fluxes of the control (FCK) and litter-free
(FLF) treatments were measured using a closed, static and opaque
chamber-gas chromatography system (Wang et al., 2012a, b). Flux
measurements were carried out between 9:00e11:00 a.m.
approximately twice a week from January 2005 to December 2007.
During SeptembereOctober 2007, flux measurements were inter-
mittent due to an instrument problem. The litter-based CH4 flux
(FCKeLF) was calculated as the difference between FCK and FLF: FCKe
LF ¼ FCK � FLF. Twelve permanent bases (50 � 50 cm) with troughs
made of stainless steel were inserted into the mineral soil to
approximately 3 cm deep. Chamber bases were installed more than
3 months prior to the first measurements. The stainless steel
chambers (50 � 50 � 50 cm) were covered with cotton pads on the
outside to reduce heat exchange between the inside of the chamber
and the surrounding environment. The base troughs were filled
with water to prevent air exchange between the inside and outside
of the chamber. Two small electric fans were fixed at the opposite
top corners of each chamber for air mixing. About 100 mL of gas
were sampled immediately after the chamber closure using a gas-
tight syringe through an F46-tube. Subsequently, four additional
samples were collected every 10 min. CH4 concentration of each
samplewas measured within two days using a gas chromatography
instrument (Agilent 4890D; Agilent Technologies, Inc., Wilmington,
Delaware, United States) equipped with a flame ionization detector
(FID). Chromatographic separations were run using a stainless steel
column (2 m long with a diameter of 2 mm) packed with 13XMS
(60e80 mesh). The temperatures of the injection/detection and
column oven were 200 and 55 �C, respectively. Ultra pure N2 was
used as the carrier gas at a rate of 30 mL min�1. The limit of
methane detection was 0.080 � 0.008 mL L�1. A certified methane
standard with a concentration of 4.81 mL L�1 (China National
Research Center for Certified Reference Materials, Beijing, China)
was used for calibration. Soil-atmosphere CH4 fluxes were calcu-
lated according to Eq. (1), and further calibrated with changes in
temperature and pressure based on Eq. (2).

F ¼ Dm
A$Dt

¼ V$Dc
A$Dt

(1)
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where F is soil-atmosphere CH4 flux (mg CH4 m�2 h�1); Dm refers
to increased CH4 in the chamber (mg); A represents ground area
covered by the chamber (m2); Dc and Dt are changes of CH4
content (mg m�3) and elapsed time (h) from chamber closure to
gas sampling, respectively; V refers to the volume of the chamber
(m3); T and P are air temperature (K) in the chamber and pressure
(kPa) of the surrounding environment at the sampling time,
respectively; and T0 (273 K) and P0 (101.3 kPa) are temperature and
pressure, respectively, under standard condition. Occasionally,
data from individual chambers was excluded if changes in CH4
concentrations did not follow a constant linear increase or
decrease (R < 0.9).

2.4. Measurement of environmental factors

Concomitantly with CH4 flux measurement, air temperature
inside the static chamber was measured using thermocouples
(JM624; Jinming Instruments Co. Ltd., Tianjin, China). Atmo-
spheric pressure was monitored using an atmospheric pressure
sensor (CS105; Vaisala Inc., Woburn, Massachusetts) fixed on a
flux tower near the study site. Soil temperature (TS) and volu-
metric SWC at 5 cm depth were measured simultaneously with
CH4 flux observations using a portable thermocouple (JM624)
and a time domain reflectometer (TDR) (TSC-I; China Agricul-
tural University, Beijing, China), respectively. Rainfall was
measured continuously with a rain gauge (TE525MM; Campbell
Scientific Inc., United States) installed over the canopy on
the flux tower, about 20 m away from the location of the
chambers.
Fig. 1. Soil-atmosphere CH4 fluxes (negative values indicate atmospheric CH4 uptakes by so
control (FCK) and litter-free (FLF) treatments; (b) litter-affected CH4 flux (FCKeLF ¼ FCK � FLF); (c
(a), each value refers to the average of six measurements and error bars represent the stan
2.5. Data analysis

The dependences of soil-atmosphere CH4 flux on soil tempera-
ture and water content were simulated using Eq. (3). The de-
pendences of soil CH4 flux on both TS and SWCwere modeled using
Eq. (4).

F ¼ alnxþ b (3)

F ¼ alnTS þ blnSWCþ g (4)

where F is measured soil-atmosphere CH4 flux (mg CH4 m�2 h�1); x
is soil temperature (�C) or volumetric water content (vol%); TS re-
fers to soil temperature (�C); SWC is volumetric soil water content
(vol%); a, b and g are the fitted parameters. Correlations between
soil-atmosphere CH4 flux and natural logarithms of TS and SWC
were performed with SPSS 13.0 (SPSS Inc., Chicago, Illinois, United
States). Figures were drawn using ORIGIN 8.0 (OriginLabs Corpo-
ration, Northampton, Massachusetts, United States) and CorelDraw
9 (Corel Corporation, Canada).
3. Results

3.1. Temporal CH4 flux and environmental factors

During the study period of 2005e2007 (Fig. 1 a), FCK varied
from �67.2 to þ21.1 mg CH4 m�2 h�1, with an average of �14.3 mg
CH4 m�2 h�1 (negative values indicate uptake). FLF ranged
from �90.4 to þ34.0 mg CH4 m�2 h�1, with an average of �14.2 mg
CH4 m�2 h�1. FCKeLF varied from �45.5 to þ52.5 mg CH4 m�2 h�1,
with an average of�0.1 mg CH4 m�2 h�1 (Fig. 1b). Monthly mean FCK
and FLF had general seasonal fluctuations, with low uptake values
il) and environmental variables during the period of 2005e2007: (a) CH4 fluxes of the
) monthly mean FCK, FLF and FCKeLF; and (d) soil temperature and moisture. In subfigure
dard deviations.
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during the wet season (JanuaryeJune) and high uptake values
during the dry season (JulyeDecember) (Fig. 1c). In contrast,
monthly mean FCKeLF had a generally reversed pattern (Fig. 1c). Soil
temperature varied from 3.9 to 28.7 �C, with an average of 18.5 �C
(Fig. 1d). Mean SWC during the wet seasons and the dry seasons
was 19.5 and 12.9 vol%, respectively (Fig. 1d).

3.2. Dependence of CH4 flux on soil temperature and moisture

Monthly mean FCK and FLF were not affected by TS (P ¼ 0.40 and
0.21, respectively) (Fig. 2a). Monthly mean FCK-LF was also not
influenced by TS (P ¼ 0.40) (Fig. 2a). In contrast, monthly mean FCK
and FLF were positively related with SWC (Fig. 2b). However,
monthly mean FCKeLF was negatively influenced by SWC and
reached zero when SWC was about 15.8 vol% (Fig. 2b). This in-
dicates that the litter layer negatively affected CH4 uptake when
SWC was below 15.8 vol% and positively affected CH4 uptake when
SWC was above this value (Fig. 2b). Due to the co-effects of TS and
SWC, both variables were used to model FCK, FLF and FCKeLF, but
precision of the simulations was not improved.

3.3. CH4 uptake during the wet and dry seasons

Monthly mean FCK, FLF and FCKeLF were not affected by TS during
both the wet and dry seasons (P ¼ 0.24e0.66) (Fig. 3 a and b).
During the wet seasons, FCK, FLF and FCKeLF were not influenced by
Fig. 2. Responses of monthly mean soil-atmosphere CH4 fluxes (FCK, FLF and FCKeLF) to
natural logarithms of (a) soil temperature (P ¼ 0.21e0.40) and (b) water content. In
subfigure (b), the three relationships are: FCK ¼ 8.3*lnSWC � 36.6, R2 ¼ 0.17, P ¼ 0.015;
FLF ¼ 21.5*lnSWC � 73.3, R2 ¼ 0.51, P < 0.001; and FCKeLF ¼ �13.3*lnSWC þ 36.7,
R2 ¼ 0.29, P < 0.001. When SWC ¼ 15.8 vol%, FCKeLF ¼ 0.
SWC (P ¼ 0.06e0.38) (Fig. 3c). In contrast, during the dry seasons,
FLF and FCKeLF were both correlated to SWC (P ¼ 0.02 and 0.03)
(Fig. 3d).

3.4. Annual soil CH4 uptake and the effect of litter layer

According to the annual mean CH4 flux (Fig. 1), the cumulative
annual CH4 uptake by the control and litter-free soils was estimated
to be 125.0 � 31.9 and 124.2 � 28.6 mg CH4 m�2 year�1, respec-
tively, suggesting that litter layer had a minimal effect (þ0.7%) on
annual CH4 uptake amount. Therefore, the bidirectional buffering
effects of litter layer were offset by each other.

4. Discussion

4.1. Soil-atmosphere CH4 flux and controlling factors

The net CH4 exchange between soils and atmosphere is the
balance between CH4 production (methanogenesis) and con-
sumption (methanotrophy). Forest soils are considered active sinks
of atmospheric CH4 (Smith et al., 2000; Le Mer and Roger, 2001). In
this study, soils both with and without litter layers were generally
CH4 sinks. However, transient CH4 sources were observed, espe-
cially during the wet seasons (Fig. 1 a). This result is in agreement
with that in tropical rain forests (Davidson et al., 2004; Yan et al.,
2008). Oxygen limitation (Verchot et al., 2000; Davidson et al.,
2004) or consumption in decaying litter and upper soil organic
matter (Maljanen et al., 2001) may lead to a rapid onset of anaer-
obic methanogenesis.

Seasonal patterns of CH4 uptake at our study site were weak,
similar to those in many other forests (Tang et al., 2006; Morishita
et al., 2007; Liu et al., 2008; Zhang et al., 2008). Seasonal CH4 uptake
by soils was correlated with SWC (Fig. 2b), especially during the dry
season (Fig. 3d). This result is consistent with results found in slash
pine plantations in Florida (Castro et al., 2000) and many other
forest types (Castro et al., 1994a; Steinkamp et al., 2001;
Butterbach-Bahl et al., 2004; Curry, 2007; Liu et al., 2008; Yan
et al., 2008; Zhang et al., 2008; Guckland et al., 2009; Rowlings
et al., 2012). The primary reason is that SWC affects soil gas diffu-
sivity (Marrero and Mason, 1972), which is considered the primary
factor in regulating atmospheric CH4 uptake by soils (Striegl, 1993;
Brumme and Borken, 1999). Furthermore, low SWC, not extreme
drought, has a limited effect on CH4 uptake by forest soils (Saari
et al., 1998). In addition, we found that high SWC could turn soil
into a CH4 source (Fig. 1a) as similar as other forests (Yan et al.,
2008). Contrary to our results, a relationship between CH4 uptake
and SWC was not found in tropical montane forests, possibly
because of the absence of a pronounced dry season and small
variations in SWC across the whole year (Wolf et al., 2011).

TS had no effect on CH4 uptake in our study (Fig. 1) though
microbial activity in soils depends on temperature (Conrad, 1996).
Our result was supported by several previous studies (Born et al.,
1990; Priemé and Christensen, 1997; Borken et al., 2000; Smith
et al., 2000; Tang et al., 2006; Morishita et al., 2007; Peichl et al.,
2010). The no dependencies of CH4 uptake on TS may be attrib-
uted to substrate (atmospheric CH4) limitation that is controlled by
gas diffusivity in soils and low atmospheric CH4 concentration, as
indicated by Smith et al. (2000).

In our study, annual atmospheric CH4 uptake by the soil was
about 125 mg CH4 m�2 year�1. The CH4 uptake strength here was
comparable to that reported for tropical forest soils in China (Zhang
et al., 2008), German forests (Borken and Brumme, 1997; Smith
et al., 2000), temperate and subtropical forest soils in Japan
(Morishita et al., 2007) and boreal forests in Siberia (Flessa et al.,
2008). However, the strength of CH4 uptake at our study site was



Fig. 3. Dependence of monthly mean soil-atmosphere CH4 fluxes (FCK, FLF and FCKeLF) on (a and b) soil temperature (P ¼ 0.24e0.66) and (c and d) water content during the wet and
dry seasons, respectively. In subfigure (d), the two relationships are: FLF ¼ 23.3*lnSWC e 77.6, R2 ¼ 0.32, P ¼ 0.02; FCKeLF ¼ �19.8*lnSWC þ 52.8, R2 ¼ 0.29, P ¼ 0.03.
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also much lower than values found in other forest ecosystems
(Adamsen and King, 1993; Castro et al., 1994b; Saari et al., 1998;
Price et al., 2003; Tamai et al., 2003; Tang et al., 2006; Liu et al.,
2008; Guckland et al., 2009; Wolf et al., 2011). The differences
found among these studies could be due to differences in age
(Peichl et al., 2010; Hiltbrunner et al., 2012), coniferous character-
istics (Degelmann et al., 2009), or past disturbance reforestation
(Price et al., 2003).

4.2. Effect of litter layer on CH4 uptake

The litter horizon acts as single diffusion barriers, lowering at-
mospheric CH4 uptake by soils (1.3e2.7-fold), in a boreal pine forest
(Saari et al., 1998) and in temperate forests (Borken and Brumme,
1997; Dong et al., 1998; Brumme and Borken, 1999; Steinkamp
et al., 2001; Price et al., 2003), especially during dry soil condi-
tions (Peichl et al., 2010). In this study, we also found evidence that
litter can act as a barrier when SWC was below the threshold (15.8
vol%), likely because this horizon impede gas exchange between
the soil and the atmosphere (Brumme and Borken, 1999). Contrary
to these previous studies, however, we found that the litter layer
can also increase atmospheric CH4 uptake by soil when SWC was
above a certain threshold (15.8 vol%). This idea is supported by
work by Borken and Beese (2006), who suggested that litter may
benefit the gas diffusivity of the mineral soil by storing some
rainfall. Rainfall frequency at our study site is 75e100 days year�1

(Wang et al., 2012b). About 70% of precipitation occurred in the wet
season (Wang et al., 2012a). During the wet seasons, it appears that
the litter layer holds rainfall and benefits gas diffusivity of the
mineral soil at our study site. Furthermore, under wet soil condi-
tions, high SWC suppressed CH4 uptake by mineral soil (Fig. 2b);
while litter layer may have a relatively higher contribution total
CH4 oxidation by forest soils such as tropical montane forest soils
(Wolf et al., 2011).

At the annual scale, we found that the litter layer had a minimal
effect on CH4 uptake by soils. This result was supported by several
studies in southern China also using litter removal methods (Tang
et al., 2006; Liu et al., 2008). The main interpretation by these au-
thors was that microbial CH4 oxidation was mainly related to the
mineral soil rather than the litter layer (Saari et al., 1998; Brumme
and Borken, 1999; Steinkamp et al., 2001). In contrast, we found
that the litter layer acted as a moisture-induced bidirectional buffer
for CH4 consumption by the soils. Canceling effects during the wet
and dry seasons generate a minimal annual effect. The balance of
these effects is likely to change in the future due to climate change.
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